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Interaction mechanisms of glissile loops in FCC systems by the elastic theory

T. Okita a,*, S. Fujita b, Y. Yang a, N. Sekimura a

a Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
b Department of Quantum Engineering and Systems Science, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

a r t i c l e i n f o a b s t r a c t
0022-3115/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.jnucmat.2008.12.310

* Corresponding author.
E-mail address: okita@q.t.u-tokyo.ac.jp (T. Okita).
The elastic theory calculations are conducted to clarify the interaction between a large dislocation loop
and a small glissile loop in face-centered-cubic systems. In the parallel Burgers vector case, the interac-
tion force changes from repulsive to attractive when the small loop moves along its glide cylinder. In the
perpendicular Burgers vector cases, the interaction strongly depends on the spatial position of the glide
cylinder of the small loop from the center of the large loop. There are attractive regions in any combina-
tions of the Burgers vectors and spatial positions calculated in this study, which may induce the loop
decoration.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The production and formation of irradiation-induced defects
under high energetic particle injections are quite different from
that under the electron and light ion irradiation [1], as recent MD
simulations demonstrate that high damage energy irradiation di-
rectly produces defect clusters as well as Frenkel pairs [2,3]. These
clusters, when no longer subject to the rapid Brownian motion, are
synonymous with dislocation loops [4]. They are still highly mobile
because of their low activation energies, or low Peierls potentials
[5,6], and interact with other loops or line dislocations [7–10]. As
a result, the growth of larger loops as well as the evolution of net-
work dislocations depends also on the capture rate of these small
glissile loops rather than of individual self-interstitials only. Since
the mobile directions of the small loops are constraint to specific
directions, the growth kinetics of the larger loops under collision
cascades are strongly different from that by three-dimensional de-
fect migrations. Therefore, the loop–loop interaction is a mecha-
nism which we should clarify in order to build up models for the
microstructural evolution, and resultant macroscopic changes such
as void swelling or irradiation hardening, especially under 14 MeV
fusion neutrons [3].

In this study, the elastic theory is used to elucidate the loop
behavior under the stress field of other loops in face-centered-
cubic (FCC) systems. We incorporate the glide motion and rotation
of the loop into the model.
ll rights reserved.
2. Calculation methods

We use the equation derived by Wolfer et al. [4], which de-
scribes the interaction of a loop with any kinds of stress field. In
their study, they remove the constraint of a fixed orientation of
the loop, and allow the loop to rotate in order to minimize the en-
ergy under the stress field by assuming elastically isotropic solid,
the detail of which is written in [4]. The equations used in this
study are written as follow:
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where c is the angle between the traction vector~t, and the Burgers
vector of the loop ~b, the mobile and rotational loop, which we call
‘loop A’, and
ffiffiffi
k
p
¼ sina ð2-2Þ

a is the angle between the Burgers vector and the normal vector of
the loop A, defining the rotational angle.
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W0 and Aa0 are the self-energy and the area of the circular loop A,
respectively, and g is an empirical factor, chosen to be 1/4. K(k)
and E(k) are the complete elliptic integral of the first kind and sec-
ond kind, respectively. At a given position along the glide cylinder,
the angle c between the traction vector and the Burgers vector is
known, while a needs to be determined. Therefore, Eq. (2-1) must
be solved numerically for k, and hence for the angle a.

The traction vector exerted on the loop originating from the
other loop (hereinafter, we call this loop ‘loop B’) can be written
with the infinitesimal dislocation loop approximation [11],
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Fig. 2. The change in the energy as a function of |x|/h, when ~B ¼ a0=2 [1 1 0], and
~b ¼ a0=2 [1 1 0]. x and h are defined in Fig. 1(a).
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l, Ab and m denote the shear modulus, the area of the loop B, and the
poisson’s ratio, respectively.~b,~B, ~N and~r describe the Burgers vector
of the loop A, the Burgers vector of the loop B, the normal vector of
the loop B and the distance vector between the loop A and loop B,
respectively. The infinitesimal small loop approximation will be
quantitatively valid when the distance is more than twice as large
as the loop radii [10].

In this study, we assume that the loop B, which is a larger
loop, does not glide nor does change the normal vector by the
stress originating from the loop A, and ~B ¼ a0=2[1 1 0], ~N ¼ffiffiffi

2
p

=2[1 1 0].The shear modulus and the poisson’s ratio are set to
be 6.50 � 1010 Pa and 0.30, respectively.

3. Results and discussion

In this study, we choose the radius of the loop A (ra) and loop B
(rb) to be 5.0 � 10�10 m and 2.0 � 10�9 m, respectively, while the
closest distance between the centroids of the loops is set to be
3.0 � 10�9 m, which is shown as h in Fig. 1. The preliminary calcu-
lations confirm that the change in the energy is proportional to h�3,
r2

a and r2
b , which is exactly agreed with the conventional dislocation

theory [12]. Even when we include the loop rotation, although the
stable position of the loop A is changed by its rotation, the change
in the energy at the stable position reveals mostly the same depen-
dencies. This indicates that the calculations conducted in this study
by using the specific values of h, ra, and rb can be extended to any
sizes of loops and any distances.

In both cases shown in the followings, when the Burgers vector
of one loop is reversed, only the sign of the interaction energy
changes without loop rotation. On the other hand, when we in-
clude the loop rotation, the absolute value also changes and the
interaction energy becomes smaller.

3.1. Parallel Burgers vectors case, ~B ¼ a0=2 [1 1 0], ~b ¼ a0=2 [1 1 0]

Fig. 2 describes the change in the energy as a function of |x|/h,
which is defined in Fig. 1(a). The interaction can be almost negligi-
ble when |x|/h > 10, which demonstrates the short-range interac-
Fig. 1. The spatial relationships between the small mobile loop (loop A) and large loop (lo
the centroids of the loops. (a) the parallel Burgers vectors, and (b) the perpendicular Bu
tion of the loops. When |x|/h > 2.0, the compressive stress of the
loop B repels the loop A, and there is an activation barrier at |x|/h
� 2.0, where the stress field of the loop B changes from the com-
pressive to tensile. The loop A comes to the stable position of |x|/
h � 0.5. In this case, the loops never coalesce only by the glide mo-
tion. Therefore, when a collision cascade occurs inside of the ten-
sile field of the loop B and directly generates a loop, it will tend
to be attracted and come to be aligned near the loop B [13], unless
the Burgers vector is changed or climb motions occur.

The activation barrier at |x|/h � 2.0 becomes smaller when we
include the rotation of the loop A, hence some of the loops can
overcome the barrier and come into the stable position at higher
probability. This indicates that the rotation of the loop enhances
loop alignments.

3.2. Perpendicular Burgers vector case, ~B ¼ a0=2 [1 1 0], ~b ¼ a0=2
[1 1 0]

In this case, the spatial position for the glide cylinder of the loop
A is determined by the angle h as well as the distance h, as shown
in Fig. 1(b). In this study, we choose the specific angles, namely
h = 90� and h = 0�. Fig. 3(a) shows the change in the energy at
h = 90�as a function of |x|/h. In this case, the potential shows the
op B). x denotes the glide direction of the loop A, and h the closest distance between
rgers vectors.



Fig. 3. The changes in the energy as a function of |x|/h, when ~B ¼ a0=2 [1 1 0], and ~b ¼ a0=2 [1 �1 0]. x, h and h are defined in Fig. 1(b). (a) h = 90� and (b) h = 0�.
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qualitatively similar dependence as the parallel Burgers vectors
case, shown in Fig. 2. The interaction changes from the repulsive
to the attractive when |x|/h � 1.0. When we include the rotation
of the loop A, there is a stable position at |x|/h � 0.2, which could
not be observed without rotation. We have obtained the similar re-
sults by molecular dynamics simulations [14]. Fig. 3(b) shows the
change in the energy at h = 0�, when the glide cylinder of the loop A
passes just above the inserted plane of the loop B. There is an
attractive interaction, although the absolute value of the energy
is very small and the interaction is short-range. In this case, the
glide motion of the loop B may possibly be the major interaction
and the loops may coalesce each other, which is not included in
this model. We also clarified that when h ranges between 0� and
90�, the changes in the energy vary between these two extreme
cases.

4. Conclusions

We have evaluated the change in the energy by the glide motion
of a loop exerted by the stress field originating from another loop,
and incorporate the rotation of the loop under the stress field in
FCC systems. When the Burgers vectors are parallel, the loop
formed in the tensile region is attracted by the other loop, and they
will be aligned nearby. When the Burgers vectors are perpendicu-
lar, the interaction depends on the angle between the position vec-
tor of the glide cylinder and the normal vector of the other loop. In
any cases, however, there exist attractive regions, which moves
loops to be aligned and the loops may coalesce each other. In this
calculation, we do not include the loops split into two partials and
the energy contributions of the core tractions [15], which are re-
mained for further studies.
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